Contents

Members of working group

1	General remarks on the seismic behaviour of structures
1.1	Introduction
1.2	Earthquake risk prevention regulations
1.2.1	Earthquake zoning in France
1.2.2	Importance classes
1.2.3	Ground types
1.2.4	Seismic action
1.3	Earthquake building regulations
1.3.1	Rules applicable to buildings under no special risks
1.3.2	Rules applicable to bridges
1.3.3	Rules applicable to structures and buildings at special risk
1.4	Performance requirements and compliance criteria
1.4.1	Definition of limit states according to EC8-3
1.4.2	Reminder of ductility classes
2	Seismic retrofitting of concrete structures with FRP
2.1	Typical pathologies of reinforced concrete structures under seismic loading
2.1.1	Shear failure
2.1.2	Failure and damage under flexure with or without axial force
2.1.3	Failure by the formation of plastic hinges in critical regions
2.1.4	Summary
2.2	Retrofitting strategies
2.3	Contribution of composite materials
2.3.1	General remarks on composite materials
2.3.2	The main types of FRPs
2.4	Different applications of FRPs (Fibre-Reinforced Polymers)
2.4.1	Shear strengthening
2.4.2	Jacketing with composite materials
2.4.3	Flexural strengthening
2.4.4	Brief reminder of failure by detachment of FRP
2.4.5	Summary and development of these solutions
2.5	Examples of seismic retrofitting of structures using FRP reinforcements
3	Modelling Methods for Concrete Structures
3.1	Constitutive law for composites
3.2	Definition of analysis methods
3.2.1	Digital analysis methods
3.2.2	Precautions to be taken when choosing a linear analysis
3.2.3	Modelling methods
3.2.4	Conclusion
4	Design of FRP reinforcement
4.1	Introduction
4.2	Field of application, standards, references and symbols.
4.2.1	Standards and references
	- Symbols
	- N.B. blue text corresponds to changes made to the Eurocode text
4.3	Actions and stresses
4.4	Design values for properties of FRP sheets
4.5	Reinforcement with respect to normal force and flexure with and without axial force
4.5.1	Confinement

4.5.2	Case of reinforcement with respect to flexure with and without axial force
4.6	FRP retrofitting to prevent shear failure
4.6.1	Rectangular section
4.6.2	Circular cross-sections
4.6.3	Contribution of the composite to shear strength in the case of cyclic loading at a plastic hinge
4.6.4	Calculation example 1: Squat column
4.6.5	Calculation example 2: Squat slender wall
4.6.6	Reliable sensitivity analyses and calibration of safety factors based on design equations
5	Detailing provisions
5.1	Detailing provisions for flexural strength
5.2	Detailing provisions for confinement

5.3 Detailing provisions for shear

5.4 Anchorage

5.4.1 General

5.4.2 Failure modes

5.4.3 Characterisation tests

5.4.4 Design proposals

5.4.5 Detailing

6 Conclusions

APPENDICES

APPENDIX 1: BIBLIOGRAPHIC REFERENCES

APPENDIX 2: CASE STUDIES

APPENDIX 3: Sensitivity analyses based on design equations. Example of shear

6.1.1 Local sensitivity analysis

6.1.2 Global sensitivity analysis

6.1.3 Reliability sensitivity analysis

6.1.4 Other sensitivity studies