

SOMMAIRE

AVANT-PROPOS	
INTRODUCTION	9
1. NORMALISATION ET REGLEMENTATION	10
1-1 PRODUITS	10
1-1-1 Normalisation (NFEN 10 025)	10
1-1-2 La procédure d'agrément (CCTG, marque NF Acier, marquage CE)	24
1-1-3 Exigences de choix des aciers	24
1-2 CONCEPTION ET CALCULS	28
1-2-1 Analyse globale plastique	29
1-2-2 Ductilité	29
1-2-3 Calcul des assemblages	30
1-2-4 Vérification à la fatigue	31
1-2-5 Application aux structures définies par les parties EN 1993-2 à EN 1993-6	32
1-3 LES DOCUMENTS D'EXECUTION ET LA QUALITE D'EXECUTION	32
1-3-1 Introduction	32
1-3-2 Les principales options de l'EN 1090-2	32
1-3-3 L'organisation de la qualité	35
1-3-4 Les normes associées à l'EN 1090-2	36
1-3-5 Matériaux et produits	36
1-3-6 La Directive « Produits de la Construction »	38
1-3-7 Les normes de produits	40
1-3-8 Les normes de soudage et de contrôle	41
2. ELABORATION ET PROPRIETES DES ACIERS HLE	47
2-1 COMPOSITION CHIMIQUE ET STRUCTURE DES ACIERS HLE	47
2-1-1 Influence de l'analyse sur les caractéristiques mécaniques	47
2-1-2 Influence des conditions de refroidissement sur la structure des aciers	50
2-2 ELABORATION DES ACIERS HLE	51
2-2-1 Influence du processus de fabrication sur les propriétés des aciers	51
2-2-2 Les différents processus de fabrication : synthèse	54
2-3 LES PLAQUES OU TÔLES QUARTO	56
2-3-1 Gamme dimensionnelle pour les états de livraison N, M et Q	56
2-3-2 Les procédés de fabrication des aciers à hautes limites d'élasticité	57
2-3-3 Propriétés des aciers à Hautes Performances	65
2-3-4 Résistance au feu	69
2-3-5 Résistance à la corrosion	70

2-4 LES POUTRELLES HLE	70
2-4-1 Procédé de fabrication et gamme dimensionnelle	70
2-4-2 Propriétés mécaniques et chimiques des aciers S460 thermomécaniques	72
2-4-3 Résistance au feu des aciers 5460M comparés aux aciers conventionnels	77
2-4-4 Comportement en fatigue d'assemblages soudés en profilés 5460M	79
2-4-5 Comportement en flambement des profilés 5460M	80
2-4-6 Profilés S460M et construction parasismique	82
3. MISE EN ŒUVRE DES ACIERS HLE	83
3-1 LE SOUDAGE	83
3-1-1 Introduction	83
3-1-2 Aciers de nuance 5 460 M	85
3-1-3 Aciers de nuance 5 690 Q	103
3-1-4 Cas du soudage hétérogène acier 5460 sur acier 5690	113
3-1-5 Les procédures de réparation en soudage	113
3-2 AMELIORATION DU COMPORTEMENT EN FATIGUE DES ASSEMBLAGES SOUDES	114
3-2-1 Les principes des techniques d'amélioration de la tenue en fatigue	117
3-2-2 Réduction de la concentration de contrainte en pied de cordon	119
3-2-3 Création au niveau du pied de cordon d'un champ de contraintes résiduelles de compression	120
3-2-4 Les gains effectifs possibles – la position des textes	123
3-2-5 Parachèvement des cordons de soudure vis-à-vis des contraintes géométriques	125
3-2-6 Influence de la résilience des aciers HLE sur la fatigue	125
4. CONCEPTION	127
4-1 INTRODUCTION	127
4-2 PONTS DE GRANDES PORTEES	128
4-2-1 Répartition matière longitudinale : semelles	129
4-2-2 Répartition matière longitudinale : âmes	130
4-2-3 Contraintes locales au lancement - Patch Loading	131
4-2-4 Condition de déformabilité	131
4-3 PONTS TREILLIS	131
4-4 PONTS DE PETITES PORTEES	132
4-5 PONTS A OSSATURES TUBULAIRES	134
4-6 CONCEPTION DE DETAIL	134
4-6-1 Raidisseurs et platines d'appuis	135
4-6-2 Goussets dans les poutres treillis	135
4-6-3 Pièces d'accrochage des câbles et suspentes	135

4-6-4 Dalles orthotropes	135
4-7 OUVRAGES SPECIAUX	138
5. CALCULS ET JUSTIFICATIONS DES STRUCTURES EN HLE	140
5-1 INTRODUCTION	140
5-2 JUSTIFICATIONS THEORIQUES ET EXPERIMENTALES POUR L'UTILISATION DES POUTRES HYBRIDES	141
5-2-1 Généralités	141
5-2-2 Eléments de justification	142
5-2-3 Modélisation numérique	162
5-2-4 Recommandations pour le calcul des poutres hybrides	163
5-3 BIPOUTRES MIXTES HYBRIDES (travée principale 80 m)	165
5-3-1 Présentation des trois solutions (S355 - S355/S460 - S460/S690)	165
5-3-2 Hypothèses pour le dimensionnement des solutions hybrides	169
5-3-3 Détermination des zones fissurées (solutions hybrides)	172
5-3-4 Exemple de justification d'une solution hybride – solution 2.	174
5-3-5 Tonnage d'acier	183
5-3-6 Vérifications à la fatigue	184
5-4 CAISSONS MIXTES HYBRIDES (travée principale 120 m)	195
5-4-1 Présentation des deux solutions (S355 - S460/S690)	195
5-4-2 Diagrammes des efforts M et V à l'ELU dans les deux ouvrages	197
5-4-3 Tonnage d'acier et chiffrage des différentes solutions	201
5-5 BIPOUTRE MIXTE INNOVANT AVEC POUTRES HYBRIDES (travée principale 130 m)	203
5-5-1 Présentation des deux solutions (S355 - S460/S690)	203
5-5-2 Tonnage d'acier et chiffrage des différentes solutions	205
6. ASPECTS ECONOMIQUES, ASPECTS ENVIRONNEMENTAUX	207
6-1 ASPECTS ECONOMIQUES	207
6-2 ASPECTS ENVIRONNEMENTAUX	224
6-2-1 Les atouts de l'acier face au développement durable	224
6-2-2 Déclaration environnementale des aciers de construction (EPD)	225
6-2-3 Une approche développement durable pour les ponts métalliques	226
6-2-4 Conclusion	229
7. LES ACIERS A HAUTES PERFORMANCES DANS LE MONDE	231
7-1 LES ACIERS A HAUTES PERFORMANCES AUX ETATS-UNIS	231
7-1-1 Historique du développement des aciers HPS 70 et HPS 100W	231

/-1-2 Les propriétés des aciers HPS /0 et HPS 100 W	233
7-1-3 Mise en œuvre des aciers HPS 70 W et HPS 100 W	235
7-1-4 Performance de résistance à la corrosion atmosphérique	235
7-2 LES ACIERS A HAUTES PERFORMANCES AU JAPON	236
7-2-1 Historique du développement des aciers BHS 500 et BHS 700	236
7-2-2 Les propriétés des aciers BHS 500 et BHS 700	237
7-2-3 Mise en œuvre des aciers BHS 500 W et BHS 700 W	237
7-3 REFERENCES D'UTILISATION	238
7-3-1 Ouvrages d'art	238
7-3-2 Constructions Offshore, construction hydraulique	245
7-3-3 Grues télescopiques	249
7-3-4 Sous-marins	250
7-3-5 Pipelines	250
8. CONCLUSIONS	252
9. SIGLES ET ABREVIATIONS	253
10. BIBLIOGRAPHIE	255