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Abstract 

This paper presents an analytical approach to derive constitutive laws from force or 

flexural tensile stress - mid-span deflection relationships obtained in 4-point-bending tests. 

The load bearing behaviour in bending is divided into hardening and softening phase. It is 

assumed that the section remains plane until the peak-load is reached in the bending test. 

Initially, the curvature at peak load is determined with the mid-span deflection and force at 

load maximum from the experiment. Therefore the principle of virtual work by double 

integration of the curvatures along the length of the prism is used. Consequently, the stress-

strain relationship until peak-load is determined directly by using two assumptions for stress 

development in this area. In the softening phase the cross-section does not remain plane. By 

assuming a characteristic length, the stress-strain response for the softening branch is defined. 

Finally, the derived constitutive laws are compared with finite element simulation and other 

numerical and analytical approaches. All calculations verify the accuracy of the model. 

 

Résumé 

Cet article présente une approche analytique afin d’obtenir les lois de comportement à 

partir de courbes force ou contrainte équivalente en flexion - flèche à mi-portée obtenues lors 

d’essais de flexion 4 points. Le comportement sous charge en flexion est divisé entre une 

phase écrouissante et une phase adoucissante. On suppose que la section reste plane jusqu’à 

ce que la charge maximale soit atteinte dans l’essai de flexion. Initialement la courbure au pic 

d’effort est déterminée à partir de la flèche et de la contrainte à mi-portée sous la charge 

maximale obtenue dans l’expérience. On utilise pour cela le principe des travaux virtuels par 

double intégration des courbures le long du prisme. En conséquence la relation contrainte-

déformation jusqu’au pic d’effort est déterminée directement en utilisant deux hypothèses 

pour la distribution des contraintes dans cette zone. Dans la phase adoucissante la section 

droite ne reste pas plane. En postulant une longueur caractéristique, la relation contrainte-

déformation peut être établie pour la branche adoucissante. Finalement, les lois de 

comportement obtenues sont comparées avec un calcul aux éléments finis et d’autres 

approches numériques et analytiques. Tous les calculs vérifient la précision du modèle. 
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1. INTRODUCTION 

The tensile stress-strain response of ultra-high-performance fibre-reinforced concrete 

(UHPFRC) is a fundamental constitutive property, and reliable knowledge of this response is 

necessary for the design of tensile-carrying elements. Flexural test methods, whose 

implementation is well-established, present a test procedure capable of assessing this 

property. Nevertheless, these methods provide indirect information and need to be 

complemented by inverse analysis to quantify the intrinsic tensile behaviour of tested 

materials [1].  

Analytical inverse analyses for four-point flexural tests on UHPFRC or high-performance 

fibre-reinforced cementitious composites (HPFRCCs) have been developed by many 

researchers, such as [1] - [10], which are summarized and explained in [1], [2] and [3]. Baby 

et al. [3] define flexural test methods for strain-hardening and strain-softening behaviour 

depending on the expected crack distance in the bending test. For expected strain-hardening 

behaviour they differentiate between methods based on strain measurement on the specimen’s 

tensile face (such as [1] or [5]) and methods based on deflection measurement (such as [2], [8] 

or [9]). In case of strain-softening behaviour analysing methods based on crack-opening 

measurements or deflection measurements have been defined by [11].  

In case of strain-hardening material and test set-up with deflection measurement, the 

approaches proposed by [2], [8], [9] or [10] convert the “bending moment versus mid-span 

deflection experimental response” into a “bending moment – curvature response”. For this 

purpose different assumptions about the shape of the curvature along the specimen are used in 

the mentioned articles. In [2], an iterative displacement to curvature transformation is 

proposed based on the double integration of the curvature along the length of the prism. 

Consequently the stress-strain relationship is determined by point-by-point inverse analysis 

similar to the approach in [9]. Nevertheless, this method requires post-processing [10]. In 

addition, a simplified approach by using a bilinear stress-strain relationship is proposed in [2] 

and [5], which is assumed to be convenient for design or FEM analysis by the authors.   

However, many authors, such as [1] [2] or [12] define constitutive laws only for the 

loading branch until the peak-load is reached in the bending test. In contrast, approaches to 

characterize the unloading branch (crack-opening; fibre pull-out) are made in [6], [10] and 

[13] for instance. The French AFGC guidelines ([5]) assume the tensile stress to be zero at 

crack width lf/4 for reasons of simplification.  

The main aim of this research is to develop a new inverse analysis methodology without 

using FEM, which is easy to implement, reliable, quick and mechanically consistent. The 

presented model is valid for strain-hardening as well as strain-softening behaviour and 

describes both the loading and the unloading branch of the constitutive law.  

2. MODEL DESCRIPTION 

The analytical model derives constitutive laws (stress-strain relationships) from force or 

flexural tensile strength - mid-span defection relationships obtained in 4-point-bending tests. 

It can be used for normal strength concrete as well as UHPC and has been developed 

primarily for beams with deflection-hardening behaviour, but it is also applicable for beams 

with deflection-softening behaviour. Since UHPC has to fulfil a non-brittleness criterion [5], 

UHPFRC usually shows deflection-hardening behaviour for structural applications. In special 

cases, such as high loaded columns, the required ductility can be guaranteed by confinement 
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with conventional reinforcement, see [14] for instance. However, the presented investigations 

focus on deflection-hardening behaviour.  

The stress-strain relationship presented in Figure 1 is defined as basis for the analytical 

model, as proposed in [15]. Thereby, the constitutive-law is divided into three phases. Phase I 

represents the quasi-linear-elastic behaviour until the tensile matrix strength fct,0 is reached 

(loss of linearity; point 1 in Figure 1). Phase II describes the hardening behaviour until the 

residual tensile strength fct,r is reached, which is equal to the peak-load in the bending test 

(point 2 in Figure 1). The softening phase (III) starts after the peak load has been exceeded 

and until the pre-defined maximum tensile strain εct,r2 is reached (point 3 in Figure 1). It is 

characterized by fibre pull-out in the localized crack and unloading.  
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Figure 1: Basic scheme of the stress-strain relationship in the analytical model (left) and 

associated phases in the 4-point-bending test 

In phase I the tensile matrix strength fct,0 and the associated strain εct,0 = fct,0/Ecm are 

significant. In phase II, the following parameters are defined: 

 factor αj to consider the drop after exceeding the tensile matrix strength fct,0 (αj < 1 for 

strain-softening; αj = 1 for strain-hardening)  

 residual tensile strength fct,r and associated strain εct,r  

 order of polynomial n to describe the stress development between fct,0 and fct,r 

 flexural tensile strength at peak-load σmax.,eq.=M/W 

 mid-span deflection at peak-load δmax. 

 

In phase III the following parameters are essential:  

 bending moment MII and associated deflection δII when reaching the maximum tensile 

strain εct,r2  

 residual tensile strength fct,r2 due to MII  

 factor αr to describe the slope of the stress-strain relationship during crack localization  

 

The maximum tensile strain εct,r2 defines the end of the design-relevant area of the 

constitutive law. Since the approaches for εct,r2 differ in a wide range depending on the 

guideline, values of 15, 20 or 25‰ can be selected in the model.  
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2.1 Input parameters 

The required input parameters are demonstrated in Table 1. In addition to material input 

parameters the definition of the beam geometry is necessary. Further, input of the flexural 

tensile strength - mid-span deflection relationship obtained in experiment is required. 

 

Table 1: Input parameters 

tensile matrix strength fct,0 

 

elastic modulus of UHPC Ecm 

fibre length lf  

factor αj  

order of the parabola n 

maximum tensile strain εct,r2 

factor αr 

mid-span deflection at peak-load δmax. 

flexural tensile strength at peak-load 

σmax.,eq.=M/W 

area of bending moment MII and deflection δII 

2.2 Hardening phase – multiple-cracking 

Phases I and II are summarized in the model description. As mentioned, phase I ends with 

the loss of linearity. In phase II, multiple cracks are formed, until the peak-load is reached and 

the localization in the weakest crack occurs in phase III. In case of deflection-softening 

behaviour, phase II is skipped. Consequently localization and crack-opening starts 

immediately after the first crack. A detailed description of the load-deformation behaviour of 

fibre reinforced bending beams is presented in [15] and [16] for instance.  

In order to consider the size effect, the direct tensile matrix strength fct,0 is converted into 

flexural matrix strength fct,fl (nonlinear behaviour initiation point; see Figure 1). Therefore the 

approach of [4] and [17] according to equation 1 is used. The associated deflection δ0 is 

calculated by assuming linear-elastic behaviour.  

𝑓𝑐𝑡 ,𝑓𝑙 =
𝑓𝑐𝑡 ,0

2 ∙ (ℎ/ℎ0)0.7

1 + 2 ∙ (ℎ/ℎ0)
0.7

 

 

(1) 

Further, the coefficient αj,fl is defined from the factor αj to consider the size effect: 

𝛼𝑗 ,𝑓𝑙 = 𝛼𝑗 ∙
𝑓𝑐𝑡 ,0
𝑓𝑐𝑡 ,𝑓𝑙

 

 

(2) 

In principle, the mid-span deflection δ is calculated with the principle of virtual work by 

integrating the curvature and the virtual moment along the beam (double integration of 

curvature; equation 3). Therefore, the definition ϰ=M/EI is used and the curvature remains 

constant in the zone of constant bending moment. Note, that this approach is only valid if the 

crack spacing in the experiment sr is smaller than lf. The static and virtual system as well as 

the curvature for 4-point-bending tests with load application at the third points is 
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demonstrated in Figure 2. Similar approaches have been used in [2] [8], [9] or [10] for 

instance.  

𝛿 =
1

𝐸𝐼
∙  𝑀 𝑥 

      
𝑙

0

∙ 𝑀 𝑥 𝑑𝑥 =  𝑀 𝑥 
      
𝑙

0

∙ 𝜘 𝑥 𝑑𝑥  
 

(3) 

The curvature at peak-load ϰP is determined by equation 4, which results from 

transforming equation 3, according to [15] (δ = δmax.; MP = σmax.,eq.·W; see input parameters). 

The exponent k considers the nonlinear curvature distribution between the curvature at crack 

moment ϰcr and ϰP. A value of 0.6 is recommended in [15] and used in this investigation.  
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(4) 

 

Figure 2: Determination of the curvature at peak-load according to [15] 

Linear strain distribution over the cross-section height is assumed until the peak-load is 

reached in bending test, which means the section remains plane between fct,0 and fct,r. The 

results of FE-simulations verify this assumption, as described in [18]. Linear-elastic material 

behaviour is used to calculate the compressive force Fc and the tensile matrix force Fct,0.  

Consequently, the residual tensile strength fct,r and the associated strain εct,r are determined 

directly by equilibrium in the cross-section. Since the curvature at peak-load ϰP, the external 

bending moment MP = σmax.,eq. W and the tensile matrix strength fct,0 are known, fct,r is 

calculated based on equilibrium of the horizontal forces and bending moments [15]. As 

mentioned above, the values for αj,fl and the order of the parabola n have to be defined in 

advance. Consequently, the compressive zone height x, εct,r and fct,r are known. Figure 3 

shows the stresses and strains in the section. More information has been published in [18]. 

Additional points between the first crack (point 1 in Figure 1) and peak-load (point 2 in 

Figure 1) are calculated by varying the curvature ϰcr  ≤ ϰi ≤ ϰP. Since the cross-section 

remains plane and the constitutive law is known, the associated strain and deflection are 

determined by equilibrium of horizontal forces and bending moments.  
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Figure 3: Strains, stresses and crack widths to define fct,r (left) and fct,r2 (right) 

By comparing the determined flexural tensile strength - mid-span defection relationship 

with experimental results, the values for αj and n are verified and adapted if required. This is 

an iterative process until sufficient correlation with the test results is given. Figure 4 shows 

schematically the determined stress-strain relationship as well as the flexural tensile strength - 

mid-span defection relationship until peak-load is reached.  
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Figure 4: Determined stress-strain relationship (left) and flexural tensile strength - mid-span 

defection relationship for phases I + II (right) 

2.3 Softening phase – crack-opening 

The softening phase (phase III in Figure 1) starts after the peak-load has been reached in 

bending test. It is characterized by failure crack localization and fibre pull-out, while the rest 

of the specimen is unloaded. The constitutive law in the unloading branch is linear until εct,r2 

is reached, as can be seen in Figure 1. Its slope in this area is characterized by the factor αr.  

Due to the crack opening, the deflection is concentrated in the macro-crack and the cross-

section does not remain plane. Consequently there is no tensile strain, but a crack opening wcr 

of the macro-crack. According to [19], the crack width is converted to tensile strain by 

assuming a characteristic length. The characteristic length llocal has been investigated in [18] 

and [20] in detail. Consequently, the results of [20] are used in this investigation, where llocal 

is estimated depending on εct,r2, bending slenderness lef/h, curvature at peak-load ϰP and beam 

height h. Linear interpolation should be performed between the individual values.  
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𝑙𝑙𝑜𝑐𝑎𝑙 =
2

3
∙ ℎ −

ℎ+ 25−𝜀𝑐𝑡 ,𝑟2 ∙7.5

600
∙ 𝜘𝑃        for lef/h = 4  

𝑙𝑙𝑜𝑐𝑎𝑙 =  ℎ +  𝜀𝑐𝑡 ,𝑟2 − 15  −
3

20
∙ 𝜘𝑃      for lef/h = 12  

 

(5) 

Initially, the definition of point 3 in Figure 1 is required, where εct,r2 is reached in the 

flexural tensile strength - mid-span defection relationship of the experiment. It is defined by 

the bending moment MII and the associated deflection δII. Therefore the crack width wlocal,requ 

due to opening of the failing crack excluding the crack width at peak load is determined:  

𝑤𝑙𝑜𝑐𝑎𝑙 ,𝑟𝑒𝑞𝑢 . = 𝑙𝑙𝑜𝑐𝑎𝑙 ∙  𝜀𝑐𝑡 ,𝑟2 − 𝜀𝑐𝑡 ,𝑟   (6) 

Subsequently, an arbitrary point in the unloading branch is selected where εct,r2 should be 

reached in the experiment (moment MII,i and deflection δII,i). The deflection δLOK,i which 

results from crack-opening theoretically, is calculated by δII,i deducing deflection beyond 

localization δOL,i for considering reversible deformation components. Reversible deformation 

components occur, since the force in the bending test decreases (unloading), and thus the 

curvature and deflection in the area beyond the localization reduce. The approach to consider 

reversible deformations has been described in [18] as well as [20] and has been verified by 

experimental investigations in [18]. In this approach 50 percent of the curvatures beyond the 

localization area, are reversible if the specimen is totally unloaded. Figure 5 shows the 

procedure to determine δLOK,i schematically.  
𝛿𝐼𝐼,𝑖 = 𝛿𝑂𝐿,𝑖 + 𝛿𝐿𝑂𝐾 ,𝑖        𝛿𝐿𝑂𝐾 ,𝑖 = 𝛿𝐼𝐼,𝑖 − 𝛿𝑂𝐿,𝑖    

(7) 
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Figure 5: Determination of δLOK,i (left) and rigid block movement to determine wlocal,calc. 

In order to determine the calculated crack width wlocal,calc caused by δLOK,i, the crack-

opening is considered as hinge between two perfectly rigid blocks as can be seen in Figure 5.  

𝑤𝑙𝑜𝑐𝑎𝑙 ,𝑐𝑎𝑙𝑐 . =
𝛿𝐿𝑂𝐾 ,𝑖 ∙  ℎ − 𝑥𝐼𝐼,𝑖 

𝑙𝑒𝑓 + 𝑥𝑟
+
𝛿𝐿𝑂𝐾 ,𝑖 ∙  ℎ − 𝑥𝐼𝐼,𝑖 

𝑙𝑒𝑓 − 𝑥𝑟
 

 

(8) 

The required compressive zone height xII,i is estimated depending on εct,r2, lef/h, ϰP h 

according to [18]. Linear interpolation should be performed between the individual values.  

𝑥𝐼𝐼,𝑖 = 10 −
𝜀𝑐𝑡 ,𝑟2−15

2
+ 0.1 ∙ 𝜘𝑃      for lef/h = 4  

𝑥𝐼𝐼,𝑖 = 3.4−
3

25
∙  𝜀𝑐𝑡 ,𝑟2 − 15 + 0.012 ∙ 𝜘𝑃     for lef/h = 12  

 

(9) 
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The point MII,i/δII,i is iterated until the calculated crack width wlocal,calc is equal to the real 

crack width wlocal,requ. The point MII/δII at εct,r2 is obtained when wlocal,requ=wlocal,calc. 

Alternatively, δII can be estimated according to [15] by equation 10 for reasons of 

simplification. The investigations in [18] verify the accuracy of the presented approach, while 

equation 10 is only valid for standardized beam specimens according to [21].  

𝛿𝐼𝐼 =
1

1.2
∙ 𝑙𝑙𝑜𝑐𝑎𝑙 ∙  𝜀𝑐𝑡 ,𝑟2 − 𝜀𝑐𝑡 ,𝑟 + 𝛿𝑚𝑎𝑥 . 

 

(10) 

Consequently, the compressive zone curvature ϰII of point MII/δII is determined, by the 

principle of virtual work (double integration of curvature). Figure 6 demonstrates the static 

system, the curvature and the virtual system. The curvature ϰII results from converting 

equation 3. For further information, see [18].  

 

Figure 6: Static system, curvature and virtual system in phase III (unloading branch) 

Since the curvature ϰII, the external bending moment MII and the constitutive law until 

peak-load are known, the residual tensile strength fct,r2 is determined directly based on 

equilibrium in the cross-section (equilibrium of horizontal forces and bending moments). As 

mentioned above the value for αr has to be defined in advance. 

It is significant, that the cross-section in this area does not remain plane. Therefore, the 

cracked tension zone is described by crack-opening according to equation 11. Linear crack 

path over the cross-section height is assumed. Figure 3 shows the stresses, strains and crack 

widths in the section. To determine the compressive force Fc and the tensile matrix force Fct,0 

a linear-elastic material behaviour is used still. The results in [18] verify this assumption.  

𝑤𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑤𝑃 + 𝑙𝑙𝑜𝑐𝑎𝑙 ∙  𝜀𝑐𝑡 ,𝑟2 − 𝜀𝑐𝑡 ,𝑟 = 𝑙𝑓 ∙ 𝜀𝑐𝑡 ,𝑟 + 𝑙𝑙𝑜𝑐𝑎𝑙 ∙  𝜀𝑐𝑡 ,𝑟2 − 𝜀𝑐𝑡 ,𝑟   
(11) 

The tensile strength fct,r2u at maximum tensile strain εct,r2 is determined by fct,r2u = (2 - 
αr)·fct,r2. Figure 7 shows the calculated stress-strain and flexural tensile strength - mid-span 

defection relationship. The factor αr has to be defined in a way that αr·fct,r2 is equal to fct,r. 

Since the constitutive law between εct,r and εct,r2 is linear, the flexural tensile strength - mid-

span defection relationship between peak-load and MII is also linear.  
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Figure 7: Determined constitutive law (left) and flexural tensile strength - mid-span defection 

relationship (right) 

3. CALCULATION RESULTS 

In [18] and [22] extensive experimental investigations on the bending behaviour of fibre 

reinforced UHPFRC have been conducted. The test program included 4-point-bending tests 

on standardized beams according to the German guideline for fibre concrete [21] 

(h = 150 mm) and on thin plates (h = 150 mm). Constitutive laws have been derived from the 

experimental response in the form of flexural tensile strength - mid-span defection 

relationships. The used input parameters have been published in [18].  
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Figure 8: Calculated bending response (left) and derived constitutive laws (right) 

The re-calculation of the experiments shows excellent correlation both in the area of 

multiple-cracking (phase I + II) and crack opening (phase III). Two representative tests 

(standardized beams) are depicted in Figure 8. Further, the results are compared with the 

numerical model presented in [20] and with finite element analysis. The analytical and 

numerical models as well as the FE-simulation give identical results. Consequently, the 

analytical model has been verified. In addition, the derived stress-strain relationships 

determined by the presented analytical and numerical model [20] can be seen in Figure 8. 

Further, the stress-strain relationships calculated according to the by point-by-point inverse 

analysis of Rigaud et al. [9] and the results of the simplified approach of AFGC [5] (Annex 4; 

chapter 3.2) are depicted. It is obvious that all approaches show sufficient correlation. 

4. CONCLUSION 

This paper presents an analytical approach to derive constitutive laws from force or 

flexural tensile strength - mid-span defection relationships obtained in 4-point-bending tests. 
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The load bearing behaviour in bending is divided in hardening phase until peak-load is 

reached and softening branch (crack-opening or fibre pull-out phase). Further, the accuracy of 

the model has been verified by comparison with results from a numerical model as well as 

finite element simulation and other analytical approaches. All methods give identical results.  
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