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Summary 
This paper presents a new and rational theory for predicting the shear behaviour of reinforced concrete 
membrane elements and beams subjected to combined shear and axial load, the Variable Crack Angle 
Softened Truss Model (VCA-STM), which is used to the entire load-deformation history including the 
slip deformation across the crack and obtain the change of the crack angle of concrete, which is non-
coincident to the directions of the principal stress and strain. This model can reasonably describe the 
appearance of secondary cracks for members with less transverse reinforcement and predict the shear 
stress transmitted by friction at the cracks. Test of 37 specimens are used to verify the calculated shear 
strength by the proposed model and is shown to be in good agreement. 
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1. Introduction 
Large-scale structures such as shear wall, bridges, containment structures and offshore structures…etc 
are required to design with significant longitudinal reinforcement, but the traditional shear design rules 
were developed from tests of members, which were not reinforced for combined shear and axial load. 
The typical and rational models such as Modified Compression Field Theory (MCFT) [1, 2], Rotating 
Angle Softened Truss Model (RA-STM) [3] and Fixed Angle Softened Truss Model (FA-STM) [4, 5] 
were commonly applied for predicting the nonlinear behaviour of cracked reinforced concrete 
membrane elements. However, there are so-called “conceptual errors” of the MCFT and RA-STM have 
been pointed out by some researchers [6, 7]. The MCFT and RA-STM assume the crack angle of 
concrete coincides with the direction of principal compressive stress of concrete and this causes a 
problem that the so-called “contribution of concrete” would vanish and cannot be predicted [7, 8]. The 
FA-STM assumes the angle of cracks is fixed and equal the angle of principal compressive stress with 
respect to longitudinal steel bars, usually 45 degree, this cannot reflect the change of crack angle for 
members with less or no stirrups as test observations showed that while failure occurred, there were the 
appearance of secondary cracks 9). In this paper, the variable crack angle softened truss model (VCA-
STM) is proposed to predict the shear stress-strain relationships of reinforced concrete membrane 
elements including the slip deformation across the crack. This model assumes the angle of cracks of 
concrete is changing from initial crack up to failure by considering the cracks exist at the current stage 
for a given value of load and allows the angles of cracks is non-coincident with the directions of the 
principal stress and strain of concrete. 
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2. Variable Crack-Angle Softened-Truss Model 

2.1. Stress and strain formulations 
The applied stresses (fx, fy and vxy) acting on the element with concrete principal directions in the 2,1 
coordinate are represented in Fig. 1. This model assumes that the angle of cracks, α in the concrete is 
non-coincident with the principal angle of cracked concrete, θ. 
The equations for average stresses and strains of cracked concrete in the variable crack angle softened 
truss model are expressed as follows 
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where fcx, fcy are the average concrete 
stresses in x- and y- directions 
respectively, vcxy is the average shear 
stress of concrete in the x, y coordinate, 
εcx, εcy are the average concrete strains 
in x- and y- directions respectively, γcxy 
is the average shear strain of concrete in 
the x, y coordinate, fc1, fc2 are the 
average principal stress of concrete in 
2,1 directions respectively, and εc1, εc2 
are the average principal strain of 
concrete in 2,1 directions respectively. 
 

In the VCA-STM, the angle of cracks of 
concrete, α is changing for the loading 
process, it can be derived by the using 
the stresses and strains relationship on 
the cracked surface from the Mohr circle 
as shown in Fig. 2. 
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Since the main inputs for generating the entire shear stress-strain response are εc1, εc2, θ and α (which 
will be discussed in 2.4), the above equation includes two unknowns, which are the principal inclination 
of concrete and angle of cracks, θ and α respectively. In order to determine the crack angle, α, one more 
equation is required for solving the concrete shear stress, vci, which will shown in 2.3. 
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Fig. 1 Stresses acting on reinforced concrete membrane 
elements 
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2.2. Constitutive laws 
 

The principal compressive and tensile stresses, fc2 and 
fc1 can be obtained by the following constitutive laws: 
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where 'f c  is the maximum cylinder strength of 
concrete (MPa), c'ε  is the concrete strain at peak 
stress and ζ  is the softening coefficient equals 
( ) ( )1cc 40011'f8.5 ε+⋅ . 
If εc1 < 0.00008, 1cc1c Ef ε=              (9) 

If εc1 ≥ 0.00008, ( ) 4.0
1cr1c 00008.0ff ε=         (10) 

 
where crf  is the cracking stress of concrete equals 

( )MPa'f31.0 c  and cE  is the elastic modulus of 

concrete taken as ( )MPa'f3875 c . 
The stresses acted on the longitudinal reinforcement 
and transverse reinforcement can be calculated by 
using the following constitutive laws: 
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where εnp is the average steel tensile strain at first yield defined as εyd(0.93 – 2B) and B is the 
parameter equal to ( ) ( ) 5.1

ycr f/f/1 ⋅ρ  for ρ ≥ 0.5 %. 

2.3. Concrete shear stress 
In the VCA-STM, the angle of cracks, α is a input parameter and keep changing for the entire load-
deformation history and can be determined by equation (7). The shear stress-strain relationship of 
concrete can be required to solve the angle of cracks, α, the expression of equation of concrete in shear 
is proposed by Pang and Hsu (1996) [4]: 
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where 0cijγ  is the maximum concrete shear strain, taken as )(04.0 10c θ−αε− , εc10 is the maximum 
principal tensile strain of cracked concrete, and vcimax is the maximum shear stress of concrete, 
defined as ( ) ( )[ ]( ) α+αρ−−ρ−= 2cosv2/2sinffffv maxxysysyysxsxxmaxci , where, 
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Fig. 2 Mohr circle for cracked concrete
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2.4. Solution scheme 
The total strains are required for 
determining the steel stresses and 
checking the stress equilibrium of the 
reinforced concrete membrane elements, 
which can be expressed by summing up 
the average and local strains.  
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Fig. 3 shows the algorithm for determining 
the applied shear stress-strain response for 
the reinforced concrete membrane elements. 
 
The strains caused by the crack opening 
and crack slipping are 
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The crack width and slip displacement, w and ∆ taken 
as ciS εχ  and cijS γχ  respectively, if the crack spacing, 
Sχ is determined, where 
 βε+βε=ε 2

1c
2

2cci cossin , ( ) βε−ε=γ 2sin2c1ccij   
 

(normal strain and shear strain across cracks, by 
Mohr circle) and β is the difference between α 
and θ. 
The total applied stress and shear capacity can 
be determined respectively. 
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where ρsx and ρsy are the reinforcement ratio 
in x- and y- directions respectively, fsx and fsy 
are expressed from the equations (11) and 
(12) by putting εs equals εx and εy, fx and fy 
equal zero for the reinforced concrete 

membrane elements subjected to pure shear. 
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3. Prediction of Test Results 

3.1. Shear strength and shear stress-strain relationship 
 

The VCA-STM was verified by the test 
results of the 20 PB series panels (890 x 
890 x 70 mm, details as shown in Fig. 4) 
and the 17 ST series beams (290 x 310 x 
1625 mm, details as shown in Fig. 5) by 
Bhide & Collins (1989) and Adebar 
(1989) and respectively, [9, 10] with 
respect to the shear strength and shear 
stress-strain relationship. 
These tests involved normal concrete 
shear panels subjected to combined 
axial load and shear (fx:v ratios were 
ranging from –3 to 6). They contained 
different steel ratio (ρsx and ρsy) in x- 

and y- directions (ρsx: 1.78 - 3.49 and ρsy: 0 – 0.36 
for ST series; ρsx: 1.09 – 2.02 and ρsy = 0 for PB 
series). From the predicted results, it can be observed 
that the VCA-STM predicted the shear strength of the 
test panels with a good accuracy (mean of 
test/predicted = 0.96 and COV = 0.15), which is 
shown in Fig. 6. 
Fig. 7 shows the applied shear stress-strain relationship 
(vxy Vs γxy) predicted by VCA-STM and MCFT 
comparing with the specimens PB18. The specimens 
PB18 was having the longitudinal reinforcement only 
and subjected to pure shear. It can be seen that the 
prediction given by the VCA-STM agrees very well with 
the experimental results, especially in the ascending part 
after appearance of cracking. 

3.2. Angle of cracks and principal angle of crack concrete 
 

Fig. 8 compares the observed and predicted 
crack angle of specimen PB21 (ρsx = 2.02 and 
ρsy = 0), which was loaded by combined shear 
and axial tension (fx:v = 3.1). It can be seen that 
the observed pattern of crack angle is predicted 
quite well with VCA-STM along the whole 
progress. This agrees the observations that 
failure occurred at the appearance of secondary 
cracks for members with less or no stirrups. 
 

4. Discussion 
The inclination of initial cracking is normally determined from the condition of applied stress 
greater than 45 degrees in most beams considered. If the crack-angle is assumed to be 45 degree for 
FA-STM would give a trend of overestimation of concrete shear stress. Because the contribution of 
the normal stress component at cracks is smaller; and the solution converges up to relatively larger 
crack opening and slipping in larger fixed-angles. It is also noted that as the load is progressed, new 
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cracks formed in a relatively lower inclination compared with an initial crack. On the other hand, 
MCFT assumed the crack-angle always equals the principal inclination of cracked concrete and 
started with a lower value of shear stress, however, the VCA-STM can separate crack angle and 
principal inclination of cracked concrete and give relatively more accurate results. 

5. Conclusions 
According to this research, the following conclusions can be drawn: 
1. The variable crack angle softened truss model, summarized in this paper, is capable of accurately 

predicting the shear capacity of reinforced concrete members subjected to combined shear and 
axial load when comparing with the experimental results and it is simple to be used as simple as 
the MCFT. 

2. The consideration of change of angle of cracks is proposed by the VCA-STM can describe the 
appearance of secondary of cracks of shear panels with less or no transverse reinforcement, which 
were subjected to combined shear and axial load. 

3. As the shear panels subjected to pure shear were not totally isotropic materials when the steel ratio 
in x- and y- direction is not equal. The proposed shear stress of concrete (Eqs. (7) and (13)) 
satisfies the stress and strain conditions in Mohr circle and allows the change of crack angle for 
the entire load-deformation history. 
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